问题补充: 矢量发动机与一般发动机相比有哪些优势?
矢量发动机的具体定义我就不抄了,网上到处都是。
我来试着阐述一下为什么需要矢量发动机吧。
从最早的空战双方相互打手枪到后来的绑机枪空战,然后机炮,最后导弹到今天的超视距空战,几个很重要的指标始终是更快更高更强。
这不是奥林匹克的口号,而是战斗机的指标。
更快,意味着更大的推力,这是用来进攻的,追的更容易;或者用来逃跑。
但当双方推力差不多的时候,更快更高更强以外,还有一个指标非常重要,就是更灵活。
过去的狗斗,如何在被咬住的时候,快速转向反过来咬住敌人,更快的变换航迹,机动,这些都非常重要。没有矢量发动机的时候,这些也可以做到,方法是大踩油门,狂拉驾驶杆,靠的完全是飞行员的技术,拉过头了,超出飞机的极限,不用敌人打,你也就掉下来了。
所谓的矢量发动机的“矢量”,与普通发动机的区别就在于矢量,它的目标不是飞的更快更高更强,而是更灵活。它的目标是让传统的通过飞行员控制飞机以外,通过矢量给飞行员一种新的控制飞机的手段。
具体的办法是使用可变方向的喷口,可控制排放的方法转变气流喷出的角度力道使得飞机更灵活,从而在空战中获得更多的优势。
但我们知道,飞机的飞控系统是很复杂的,现代飞机都是静不稳定系统,其空中的平衡是通过飞控系统来自动调整的。而加入矢量发动机,灵活度增加的同时,也意味着飞控的难度进一步增加。因为每一次喷口的变向都意味着要重新计算飞机的平衡。这个就非常复杂了。
加入矢量发动机绝不仅仅意味着换新发动机,还意味着飞机的风洞模型的复杂化,要修改飞控系统。这是其真正的难点。所以就连F22的矢量发动机都只是二维矢量发动机,只能在水平方向上进行调整,而不是全方位调整。你就可以想象难度有多大了
众所周知,在物理学上将“有大小和方向的量称为矢量”。而矢量发动机也就是“尾喷管可以转动,以实现推力方向的改变”。矢量发动机有“二维的”和“全向的”,二维矢量喷管具有隐身性能好,结构简单的优点,但推力损失较大。全向矢量喷管具有推力损失小的优点,但也有不利于隐身,以及结构复杂的缺点。目前来说,美国既有二维的也有全向的,俄罗斯和美国一样,而我国只有全向的。
矢量发动机不单单是在常规发动机尾喷管后面加了个矢量喷管,而是要涉及控制系统,作动结构的寿命和耐高温性能,密封件的耐高温性能。说白了,矢量发动机就事考验一个国家的材料技术和航空工业飞控系统的水平。
而矢量发动机的研发难点主要在:矢量喷管所用的材料和冷却方式,矢量喷管作动机构的寿命和可靠性,矢量喷管与发动机控制系统的配合。增加矢量喷管之后引起的增重,以及喉道面积变化导致发动机工作点偏移。如何在推力变向时,减小发动机所受的弯曲应力。由此可知,失量发动机的研发难点有多大。这也就是可以研发发动机的国家少,而能够研发真正矢量发动机的国家更少。
首先来说,矢量喷管的寿命和可靠性是极为重要的。
矢量喷管的可靠性和寿命就是由液压作动筒和所用材料决定的,由于发动机尾喷管处的温度极高,非加力时温度大概在550度—850度,加力时温度高达1500度。所以对尾喷管所用材料的耐高温性能要求极为严苛,一般而言,尾喷管使用镍或者钛合金制造。为了高温减小对尾喷管外部原件的影响,还要对尾喷管进行隔热处理。隔热的办法主要有两种,第一:在尾喷管外布设通风气流,第二:在尾喷管壁上加装隔热毯。此外,液压作动筒的寿命和密封也有较大的关系。
美国F119发动机的二维矢量喷管和F135发动机的全向矢量喷管已经在F22和F35战斗机上使用了。在使用二维矢量喷管后,F119发动机推力就会损失。但奈何,F119发动机的推力较大,损失点推力也无关紧要。而F35选择了全向矢量的F135发动机,主要是因为F35战斗机是一机多用。还要满足F35B的垂直起降能力,只能选择偏转范围较大的全向矢量喷管了。事实上,美国在矢量喷管的应用和研究上,早就走在了世界前列。而俄罗斯则紧随其后,在苏35S,苏30MKI,苏30SM,苏57上应用了全向矢量喷管。其实俄罗斯也对二维矢量喷管有研究,曾经在苏27战斗机上实验过。不过最终被俄罗斯放弃了,主要研发全向矢量喷管。
而我国的矢量喷管已经在歼-10B上验证过了,但在可靠性和寿命上与美俄还有差距。(图片来自网络)
谢谢邀请!
矢量发动机的定义
航空发动机喷口可以向不同方向偏转以产生不同方向的推力,通过尾喷管偏转获得控制力拒实现战机飞行姿态的变化控制,这就是矢量发动机最为简单的定义和理解。
误区纠正
具有矢量喷口的航空发动机并不能让战机获得一丁点儿的额外推力,仅仅是航空发动机的压缩和燃烧的混合气体通过喷口偏转改变方向而已,具有矢量推力的发动机在某种程度上也会让发动机本身失去一小部分推力,这也是矢量发动机在研发和制造上最难的难点之一。
EG:这就好比美国海军现役的F-35战机,F-35战机装配的是F-135型加力发动机,可以让F-35实现垂直起降。但是,这种矢量技术也只能仅仅让战机实现垂直起降,对战机本身的高机动性没有任何额外的贡献。所以,这也是当前很多现役的三代战机的机动性也远远超过F-35战机根本原因,譬如:歼-10系列、歼11系列、苏-30系列、苏-35、台风、阵风等。
矢量发动机与普通发动机的区别
目前,矢量发动机早已是军事大国必有的航空航天技术之一,各大国之所以如此重视矢量发动机的研发是因为矢量发动机有以下优势:
1、提升战机灵活性,增加狗斗能力
战机的灵活性主要体现在短距起降和近身狗斗两个方面,这在战时十分关键。
2、增加战机推力,减轻战机质量
按照惯例,战机的发动机推力越大,质量约轻就越好,因为这样可以提升战机的整体作战效能,矢量发动机的问世就能较大程度解决这两个方面的问题。
注解:减重是指喷口兼顾战机操作功能,相对减重,相对增推。
3、战机的全隐身性能
矢量发动机对于战机结构而言异常重要,因为这是战机具备全隐身性能前提,这也是为什么F-22/歼-20/苏-57/F-35等四代战机都要装配矢量航发的根本原因之一。
喜欢就点个赞或关注一下吧,不同的视角给你不一样的阅读体验!
1..矢量又称向量(Vector),最广义指线性空间中的元素。它的名称起源于物理学既有大小又有方向的物理量,通常绘画成箭号,因以为名。例如位移、速度、加速度、力、力矩、动量、冲量等,都是矢量。 可以用不共面的任意三个向量表示任意一个向量,用不共线的任意两个向量表示与这两个向量共面的任意一个向量。相互垂直的三个单位向量成为一组基底,这三个向量分别用i,j,k表示. 常见的向量运算有:加法,内积与外积。
2..矢量图形是使用即直线和曲线来描绘图形的。特点:不宜描绘照片图片,文件尺寸小,分辨率具有独立性即改变分辨率时质量不损失。矢量图是由一些数学方式描述的曲线组成,其基本组成单位是锚点和路径.不论放大多少倍缩小多少倍它的边缘都是平滑的.
3...矢量发动机说通俗点就是喷口可以向不同方向转动以产生不同方向的加速度!
推力矢量技术
简而言之,推力矢量技术就是通过偏转发动机喷流的方向,从而获得额外操纵力矩的技术。我们知道,作用在飞机上的推力是一个有大小、有方向的量,这种量被称为矢量。然而,一般的飞机上,推力都顺飞机轴线朝前,方向并不能改变,所以我们为了强调这一技术中推力方向可变的特点,就将它称为推力矢量技术。
不采用推力矢量技术的飞机,发动机的喷流都是与飞机的轴线重合的,产生的推力也沿轴线向前,这种情况下发动机的推力只是用于克服飞机所受到的阻力,提供飞机加速的动力。
采用推力矢量技术的飞机,则是通过喷管偏转,利用发动机产生的推力,获得多余的控制力矩,实现飞机的姿态控制。其突出特点是控制力矩与发动机紧密相关,而不受飞机本身姿态的影响。因此,可以保证在飞机作低速、大攻角机动飞行而操纵舵面几近失效时利用推力矢量提供的额外操纵力矩来控制飞机机动。第四代战斗机要求飞机要具有过失速机动能力,即大迎角下的机动能力。推力矢量技术恰恰能提供这一能力,是实现第四代战斗机战术、技术要求的必然选择。
我们可以通过图解来了解推力矢量技术的原理。
普通飞机的飞行迎角是比较小的,在这种状态下飞机的机翼和尾翼都能够产生足够的升力,保证飞机的正常飞行。当飞机攻角逐渐增大,飞机的尾翼将陷入机翼的低能尾流中,造成尾翼失速,飞机进入尾旋而导致坠毁。这个时候,纵然发动机工作正常,也无法使飞机保持平衡停留在空中。
然而当飞机采用了推力矢量之后,发动机喷管上下偏转,产生的推力不再通过飞机的重心,产生了绕飞机重心的俯仰力距,这时推力就发挥了和飞机操纵面一样的作用。由于推力的产生只与发动机有关系,这样就算飞机的迎角超过了失速迎角,推力仍然能够提供力矩使飞机配平,只要机翼还能产生足够大的升力,飞机就能继续在空中飞行了。而且,通过实验还发现推力偏转之后,不仅推力能产生直接的投影升力,还能通过超环量效应令机翼产生诱导升力,使总的升力提高。
装备了推力矢量技术的战斗机由于具有了过失速机动能力,拥有极大的空中优势,美国用装备了推力矢量技术的X-31验证机与F-18做过模拟空战,结果X-31以1:32的战绩遥遥领先于F-18。
使用推力矢量技术的飞机不仅其机动性大大提高,而且还具有前所未有的短距起落能力,这是因为使用推力矢量技术的飞机的超环量升力和推力在升力方向的分量都有利于减小飞机的离地和接地速度,缩短飞机的滑跑距离。另外,由于推力矢量喷管很容易实现推力反向,飞机在降落之后的制动力也大幅提高,因此着陆滑跑距离更加缩短了。
如果发动机的喷管不仅可以上下偏转,还能够左右偏转,那么推力不仅能够提供飞机的俯仰力矩,还能够提供偏航力矩,这就是全矢量飞机。
推力矢量技术的运用提高了飞机的控制效率,使飞机的气动控制面,例如垂尾和立尾可以大大缩小,从而飞机的重量可以减轻。另外,垂尾和立尾形成的角反射器也因此缩小,飞机的隐身性能也得到了改善。
推力矢量技术是一项综合性很强的技术,它包括推力转向喷管技术和飞机机体/推进/控制系统一体化技术。推力矢量技术的开发和研究需要尖端的航空科技,反映了一个国家的综合国力,目前世界上只有美国和俄罗斯掌握了这一技术,F-22和Su-37就是两国装备了这一先进技术的各自代表机种。
我国现在也展开了对推力矢量技术的预先研究,并取得了一定的成果,相信在不远的将来,我们的飞机也能够装备上这一先进技术翱翔蓝天,增强我国的国防实力
航空发动机专业的同学来回答一下。
矢量发动机,最主要的是解释“矢量”是什么意思。“矢量”这个词是数学上的名词,而在学校里面学过“矢量”这个概念的就会知道,矢量最重要的一点就是有方向。下图就是数学中的“矢量”。
所以说,矢量发动机就是推力有方向的航空发动机。当然了,也不是说以前的发动机推力就没有方向,而是说以前的发动机方向是固定的,相比之下现在的矢量发动机则要考虑发动机推力的方向才行。
如下图所示,就是矢量发动机在调整尾喷口的方向。通过改变发动机尾喷口的方向就可以改变发动机推力的方向。
而在具体的分类上,矢量发动机分为二维矢量发动机和三维矢量发动机。
二维矢量发动机就是推力方向只能在一个平面内改变,而三维矢量发动机则是可以在空间内变动。所以我们从后往前看的时候,二维矢量发动机的推力方向就是上下摆动,而三维矢量发动机的推力方向则可以画圈。下面两张动图就分别是二维矢量发动机和三维矢量发动机。
矢量发动机可以最大程度上提高飞机的机动性。
因为矢量发动机的推力是有方向的,所以推力方向的改变可以用来调整飞机的飞行姿态,达到提高飞机机动性的目的。如下图所示,就是发动机推力方向改变调整火箭姿态的原理,这在飞机上原理是差不多的。
另外,传统的飞机只是依靠飞机机翼、尾部的副翼、升降舵和方向舵来实现的,这种控制方式最大的问题是,一旦飞机速度降下来了,这些结构控制飞机姿态的能力就大大降低了。但是矢量发动机就不一样了,推力的大小跟飞机速度大小没有关系,所以在低俗条件下,矢量发动机对飞机机动性的提高是质的飞跃。